71#ifndef vtkBiQuadraticQuadraticHexahedron_h
72#define vtkBiQuadraticQuadraticHexahedron_h
74#include "vtkCommonDataModelModule.h"
110 int& subId,
double pcoords[3],
111 double& dist2,
double *weights) VTK_OVERRIDE;
113 double *weights) VTK_OVERRIDE;
116 int dim,
double *derivs) VTK_OVERRIDE;
128 int insideOut) VTK_OVERRIDE;
134 int IntersectWithLine(
double p1[3],
double p2[3],
double tol,
double& t,
135 double x[3],
double pcoords[3],
int& subId) VTK_OVERRIDE;
140 static
void InterpolationFunctions(
double pcoords[3],
double weights[24]);
144 static
void InterpolationDerivs(
double pcoords[3],
double derivs[72]);
150 void InterpolateFunctions(
double pcoords[3],
double weights[24]) VTK_OVERRIDE
cell represents a parabolic, 9-node isoparametric quad
cell represents a biquadratic, 24-node isoparametric hexahedron
void JacobianInverse(double pcoords[3], double **inverse, double derivs[72])
Given parametric coordinates compute inverse Jacobian transformation matrix.
static int * GetFaceArray(int faceId)
void PrintSelf(ostream &os, vtkIndent indent) override
Methods invoked by print to print information about the object including superclasses.
int GetCellType() override
Implement the vtkCell API.
static void InterpolationFunctions(double pcoords[3], double weights[24])
static vtkBiQuadraticQuadraticHexahedron * New()
int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override
Generate simplices of proper dimension.
int GetNumberOfFaces() override
Return the number of faces in the cell.
int EvaluatePosition(double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights) override
Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; ev...
~vtkBiQuadraticQuadraticHexahedron() override
static int * GetEdgeArray(int edgeId)
Return the ids of the vertices defining edge/face (edgeId/‘faceId’).
static void InterpolationDerivs(double pcoords[3], double derivs[72])
vtkCell * GetEdge(int) override
Return the edge cell from the edgeId of the cell.
void InterpolateDerivs(double pcoords[3], double derivs[72]) override
int GetCellDimension() override
Return the topological dimensional of the cell (0,1,2, or 3).
int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) override
Given parametric coordinates of a point, return the closest cell boundary, and whether the point is i...
int GetNumberOfEdges() override
Return the number of edges in the cell.
void EvaluateLocation(int &subId, double pcoords[3], double x[3], double *weights) override
Determine global coordinate (x[3]) from subId and parametric coordinates.
vtkBiQuadraticQuadraticHexahedron()
void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs) override
Compute derivatives given cell subId and parametric coordinates.
vtkCell * GetFace(int) override
Return the face cell from the faceId of the cell.
void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override
Generate contouring primitives.
double * GetParametricCoords() override
Return a contiguous array of parametric coordinates of the points defining this cell.
object to represent cell connectivity
represent and manipulate cell attribute data
abstract class to specify cell behavior
abstract superclass for arrays of numeric data
dynamic, self-adjusting array of double
a cell that represents a linear 3D hexahedron
list of point or cell ids
Abstract class in support of both point location and point insertion.
a simple class to control print indentation
abstract superclass for non-linear cells
represent and manipulate point attribute data
represent and manipulate 3D points
cell represents a parabolic, isoparametric edge
cell represents a parabolic, 8-node isoparametric quad
@ VTK_BIQUADRATIC_QUADRATIC_HEXAHEDRON